產(chǎn)品分類
-
實驗室儀器
按功能分
- 提供實驗環(huán)境的設(shè)備
- 分離樣品并處理設(shè)備
- 對樣品前處理的設(shè)備
- 處理實驗器材的設(shè)備
- 保存實驗樣品用設(shè)備
- 1. 冰箱
- 2. 保鮮柜
- 3. 傳感器
- 4. 低壓電氣
- 5. 工業(yè)自動化
- 6. 化學(xué)品儲存
- 7. 控濕柜
- 8. 冷藏柜
- 9. 冷凍箱
- 10. 循環(huán)烘箱
- 11. 液氮罐
- 12. 工業(yè)型液氮罐
- 13. 液氮容器配件
- 14. 油桶柜
- 15. 貯存箱
- 1. 搗碎機
- 2. 超聲波清洗器
- 3. 干燥箱
- 4. 滅菌器\消毒設(shè)備
- 5. 清洗機
- 1. 蛋類分析儀
- 2. 粉碎機
- 3. 谷物分析儀
- 4. 混勻儀
- 5. 攪拌器
- 6. 馬弗爐
- 7. 樣品制備設(shè)備
- 8. 破碎、研磨、均質(zhì)儀器
- 9. 消解
- 計量儀器
- 培養(yǎng)孵育設(shè)備
- 基礎(chǔ)通用設(shè)備
- 通用分析儀器
- 樣品結(jié)果分析
- 1. CO2培養(yǎng)箱
- 2. 動物細胞培養(yǎng)罐
- 3. 封口用
- 4. 發(fā)芽箱
- 5. 孵育器
- 6. 發(fā)酵罐
- 7. 恒溫槽、低溫槽
- 8. 恒溫恒濕
- 9. 培養(yǎng)箱
- 10. 培養(yǎng)架
- 11. 人工氣候箱
- 12. 水浴、油浴、金屬浴
- 13. 搖床
- 14. 厭氧微需氧細胞培養(yǎng)設(shè)備
- 1. 邊臺
- 2. 刨冰機
- 3. 電熱板
- 4. 輻射檢測
- 5. 干燥箱
- 6. 瓶口分配器
- 7. 水質(zhì)分析類
- 8. 水質(zhì)采樣器
- 9. 實驗臺
- 10. 溫、濕、氣壓、風(fēng)速、聲音、粉塵類
- 11. 穩(wěn)壓電源(UPS)
- 12. 文件柜
- 13. 移液器
- 14. 制造水、純水、超純水設(shè)備
- 15. 制冰機
- 16. 中央臺
- 17. 真空干燥箱
- 1. 比色計
- 2. 測厚儀
- 3. 光度計
- 4. 光譜儀
- 5. 光化學(xué)反應(yīng)儀
- 6. 電參數(shù)分析儀
- 7. 檢驗分析類儀器
- 8. 瀝青檢測
- 9. 酶標儀洗板機
- 10. 凝膠凈化系統(tǒng)
- 11. 氣質(zhì)聯(lián)用儀
- 12. 氣體發(fā)生裝置
- 13. 水份測定儀
- 14. 色譜類
- 15. 水質(zhì)分析、電化學(xué)儀
- 16. 石油、化工產(chǎn)品分析儀
- 17. 實驗室管理軟件
- 18. 同位素檢測
- 19. 透視設(shè)備
- 20. 旋光儀
- 21. 濁度計
- 22. 折光儀
- 顯微鏡
- 電化學(xué)分析類
- 其他
- 1. 電源
- 2. 光照組培架
- 3. 戶外檢測儀器
- 4. 戶外分析儀器
- 5. IVF工作站配套儀器
- 6. 空氣探測儀器
- 7. 科研氣象站
- 8. 空調(diào)
- 9. 冷卻器
- 10. 配件
- 11. 其他
- 12. 溶液
- 13. 軟件
- 14. 水質(zhì)分析、電化學(xué)儀
- 15. 實驗室系統(tǒng)
- 16. 試劑
- 17. 現(xiàn)場儀表
按專業(yè)實驗室分- 化學(xué)合成
- 乳品類檢測專用儀器
- 細胞工程類
- 種子檢測專用儀器
- 病理設(shè)備
- 1. 乳品類檢測專用儀器
- 1. 細胞分析儀
- 2. 細胞培養(yǎng)用品
- 3. 細胞融合、雜交
- 1. 種子檢測專用儀器
- 層析設(shè)備
- 動物實驗設(shè)備
- 糧油檢測
- 生物類基礎(chǔ)儀器
- 植物土壤檢測
- 1. 動物呼吸機
- 2. 動物固定器
- 3. 仿生消化系統(tǒng)
- 1. 電泳(電源)儀、電泳槽
- 2. 分子雜交
- 3. 基因工程
- 4. PCR儀
- 5. 紫外儀、凝膠成像系統(tǒng)
- 藥物檢測分析
- 地質(zhì)
- 紡織
- 分析儀器
- 農(nóng)產(chǎn)品質(zhì)量監(jiān)測
- 1. 臭氧濃度分析儀
- 2. 電化學(xué)分析
- 3. 煤質(zhì)分析儀系列
- 4. 石油儀器
- 5. 成分分析儀
- 6. 植物分析儀系統(tǒng)
- 水產(chǎn)品質(zhì)量安全
- 水產(chǎn)技術(shù)推廣
- 水生動物防疫
- 食品檢測實驗室
- 疾病預(yù)防控制中心
- 1. 計數(shù)儀
- 2. 水產(chǎn)品質(zhì)安監(jiān)測
- 3. 水產(chǎn)品檢測試紙
- 4. 水產(chǎn)品檢測藥品
- 1. 快速檢測試劑盒
- 2. 肉類檢測儀器
- 3. 食品安全快速分析儀
- 4. 食品安全檢測箱
- 5. 食品檢測儀器配套設(shè)備
- 6. 食品安全檢測儀器
- 7. 三十合一食品安全檢測儀
- 8. 相關(guān)配置、配件
- 供水、水文監(jiān)測
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
熱銷品牌 - 工業(yè)儀器
- 戶外儀器
- 環(huán)境監(jiān)測
- 便攜式儀器
- 在線式儀器
穩(wěn)定高效的納升二維分離技術(shù)-在線雙反相色譜
[2012/6/28]
對于微量而且復(fù)雜的樣品,如蛋白質(zhì)組學(xué)樣品、蛋白藥物中的殘留宿主細胞蛋白(HCP)等,不但需要高靈敏的納升級液相,而且需要更為充分的分離。在線二維納升分離技術(shù)(on-line 2D NanoLC)應(yīng)運而生,并已成為微量復(fù)雜樣品液質(zhì)分析所必不可少的分離手段。
傳統(tǒng)的納升在線二維技術(shù),一般采用強陽離子交換(SCX)作為第一維,反相色譜(RP)作為第二維的分離手段。這種方法是根據(jù)樣品在鹽溶液中的離子特性與疏水性,這兩種屬性間的正交關(guān)系實現(xiàn)的。但是SCX-RP技術(shù)在納升級分離中卻困難重重。困難主要來自SCX分離維度。在SCX分離中需要使用濃度較高的鹽溶液作為流動相,但含鹽流動相易發(fā)生鹽析或?qū)е聵悠吩诠苈穬?nèi)沉淀,而納升液相的管路內(nèi)徑又非常小(25-100微米)。因此,在實際運用SCX-RP分離時,經(jīng)常出現(xiàn)管路阻塞而導(dǎo)致實驗失敗。
為此,除提供傳統(tǒng)的SCX-RP分離技術(shù)外,沃特世創(chuàng)造性地開發(fā)了雙反相二維分離方法。(RP-RP)。這種RP-RP技術(shù)不必使用高濃度鹽溶液作為流動相,避免了離子交換分離易造成的管路阻塞問題,從而大大提高了納升二維液相的系統(tǒng)穩(wěn)定性和實用性。更令人興奮的是,經(jīng)過哈佛醫(yī)學(xué)院的Jarrod A. Marto全面的實驗對比發(fā)現(xiàn),較SCX-RP方法, 運用RP-RP分離技術(shù)得到的液質(zhì)分析結(jié)果更好RP-RP雙反相二維方法可以幫助科學(xué)家得到更多的蛋白質(zhì)分析結(jié)果.
這是因為:1、SCX方法使用的鹽緩沖液易產(chǎn)生離子噪音背景,從而影響質(zhì)譜數(shù)據(jù)質(zhì)量;2、SCX分離效果取決于多肽所攜帶的電荷數(shù),而多肽攜帶電荷數(shù)量類別有限,因此第一維SCX分離度較差,造成液質(zhì)數(shù)據(jù)信息質(zhì)量不高。
R P-R P雙反相分離技術(shù)在第一、第二維都使用了反相色譜,那么它是如何實現(xiàn)二維分離所必須的分離性質(zhì)的正交呢?原來,經(jīng)過研究發(fā)現(xiàn),在不同pH值環(huán)境下,多肽的反相保留行為是不一樣的。根據(jù)這個性質(zhì),沃特世的科學(xué)家開發(fā)出了獨有的RP-RP納升在線二維系統(tǒng)——nanoACQUITY UPLC® System with 2D-LC。這個系統(tǒng)的分離柱,使用了UPLC一貫的亞二微米顆粒填料,因此具有了UPLC的超高分離度等優(yōu)點。此外,它還不需要分流就可以實現(xiàn)精準的納升流速,可為實驗室節(jié)省巨大的高純度流動相購買費用及廢液處理費用,而且更加環(huán)保。nanoACQUITY UPLC System with 2D-LC雙反相二維系統(tǒng)優(yōu)點總結(jié)如下:
■ 較SCX-RP技術(shù),使用RP-RP系統(tǒng)可得到更多的蛋白鑒定結(jié)果。
■ RP-RP系統(tǒng)較SCX-RP系統(tǒng)更穩(wěn)定、耐用。
■ 與nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分離效果。
■ 不分流實現(xiàn)精準的納
nanoACQUITY UPLC System with 2D-LC雙反相在線二維系統(tǒng)結(jié)構(gòu)及分析流程如圖3,其中包括三根色譜柱:高pH反相柱、捕獲柱、低pH反相柱。在此系統(tǒng)中,第一維色譜柱為高pH色譜柱。樣品進入第一維色譜柱后,第一維梯度泵可按使用者要求,自動地階梯式提高有機相比例,以將樣品中不同疏水性肽段分批洗脫下來。從高pH反相柱上洗脫下的多肽會被富集柱捕獲。每批次被富集的多肽,將在第二維泵的線性梯度模式下進入低pH反相分析柱,在這里經(jīng)過充分分離后,樣品將到達離子源,進入質(zhì)譜分析器。
其中結(jié)構(gòu)示意圖。步驟①:樣品被自動進樣器采集后,在第一維梯度泵的推動下進入高pH色譜柱。步驟②:樣品在第一維泵階梯式梯度作用下,將一部分多肽沖出,后被捕獲柱富集。其中第二維梯度泵通過施加9倍于第一維泵的水相流動相,將溶劑稀釋為適合捕獲柱富集的體系。步驟③:在六通閥切換后,第二維泵通過線性梯度,將多肽樣品進行充分分離并送至質(zhì)譜分析。在執(zhí)行完步驟①后,步驟②與步驟③交替進行直到完成所需分析。雙反相在線二維系統(tǒng)nanoACQUIT Y UP LC System with2D-LC已經(jīng)在多肽的液質(zhì)分析方面被廣泛應(yīng)用,幫助研究人員取得了眾多極具價值的研究成果。
傳統(tǒng)的納升在線二維技術(shù),一般采用強陽離子交換(SCX)作為第一維,反相色譜(RP)作為第二維的分離手段。這種方法是根據(jù)樣品在鹽溶液中的離子特性與疏水性,這兩種屬性間的正交關(guān)系實現(xiàn)的。但是SCX-RP技術(shù)在納升級分離中卻困難重重。困難主要來自SCX分離維度。在SCX分離中需要使用濃度較高的鹽溶液作為流動相,但含鹽流動相易發(fā)生鹽析或?qū)е聵悠吩诠苈穬?nèi)沉淀,而納升液相的管路內(nèi)徑又非常小(25-100微米)。因此,在實際運用SCX-RP分離時,經(jīng)常出現(xiàn)管路阻塞而導(dǎo)致實驗失敗。
為此,除提供傳統(tǒng)的SCX-RP分離技術(shù)外,沃特世創(chuàng)造性地開發(fā)了雙反相二維分離方法。(RP-RP)。這種RP-RP技術(shù)不必使用高濃度鹽溶液作為流動相,避免了離子交換分離易造成的管路阻塞問題,從而大大提高了納升二維液相的系統(tǒng)穩(wěn)定性和實用性。更令人興奮的是,經(jīng)過哈佛醫(yī)學(xué)院的Jarrod A. Marto全面的實驗對比發(fā)現(xiàn),較SCX-RP方法, 運用RP-RP分離技術(shù)得到的液質(zhì)分析結(jié)果更好RP-RP雙反相二維方法可以幫助科學(xué)家得到更多的蛋白質(zhì)分析結(jié)果.
這是因為:1、SCX方法使用的鹽緩沖液易產(chǎn)生離子噪音背景,從而影響質(zhì)譜數(shù)據(jù)質(zhì)量;2、SCX分離效果取決于多肽所攜帶的電荷數(shù),而多肽攜帶電荷數(shù)量類別有限,因此第一維SCX分離度較差,造成液質(zhì)數(shù)據(jù)信息質(zhì)量不高。
R P-R P雙反相分離技術(shù)在第一、第二維都使用了反相色譜,那么它是如何實現(xiàn)二維分離所必須的分離性質(zhì)的正交呢?原來,經(jīng)過研究發(fā)現(xiàn),在不同pH值環(huán)境下,多肽的反相保留行為是不一樣的。根據(jù)這個性質(zhì),沃特世的科學(xué)家開發(fā)出了獨有的RP-RP納升在線二維系統(tǒng)——nanoACQUITY UPLC® System with 2D-LC。這個系統(tǒng)的分離柱,使用了UPLC一貫的亞二微米顆粒填料,因此具有了UPLC的超高分離度等優(yōu)點。此外,它還不需要分流就可以實現(xiàn)精準的納升流速,可為實驗室節(jié)省巨大的高純度流動相購買費用及廢液處理費用,而且更加環(huán)保。nanoACQUITY UPLC System with 2D-LC雙反相二維系統(tǒng)優(yōu)點總結(jié)如下:
■ 較SCX-RP技術(shù),使用RP-RP系統(tǒng)可得到更多的蛋白鑒定結(jié)果。
■ RP-RP系統(tǒng)較SCX-RP系統(tǒng)更穩(wěn)定、耐用。
■ 與nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分離效果。
■ 不分流實現(xiàn)精準的納
nanoACQUITY UPLC System with 2D-LC雙反相在線二維系統(tǒng)結(jié)構(gòu)及分析流程如圖3,其中包括三根色譜柱:高pH反相柱、捕獲柱、低pH反相柱。在此系統(tǒng)中,第一維色譜柱為高pH色譜柱。樣品進入第一維色譜柱后,第一維梯度泵可按使用者要求,自動地階梯式提高有機相比例,以將樣品中不同疏水性肽段分批洗脫下來。從高pH反相柱上洗脫下的多肽會被富集柱捕獲。每批次被富集的多肽,將在第二維泵的線性梯度模式下進入低pH反相分析柱,在這里經(jīng)過充分分離后,樣品將到達離子源,進入質(zhì)譜分析器。
其中結(jié)構(gòu)示意圖。步驟①:樣品被自動進樣器采集后,在第一維梯度泵的推動下進入高pH色譜柱。步驟②:樣品在第一維泵階梯式梯度作用下,將一部分多肽沖出,后被捕獲柱富集。其中第二維梯度泵通過施加9倍于第一維泵的水相流動相,將溶劑稀釋為適合捕獲柱富集的體系。步驟③:在六通閥切換后,第二維泵通過線性梯度,將多肽樣品進行充分分離并送至質(zhì)譜分析。在執(zhí)行完步驟①后,步驟②與步驟③交替進行直到完成所需分析。雙反相在線二維系統(tǒng)nanoACQUIT Y UP LC System with2D-LC已經(jīng)在多肽的液質(zhì)分析方面被廣泛應(yīng)用,幫助研究人員取得了眾多極具價值的研究成果。